Cars

Before EV

As the Sierra Club’s #1 Cool School, UC Davis has built a reputation around innovation and sustainability. The school has a tremendous track record when it comes to sustainable vehicle research and development, ranging from our esteemed Future Car submissions to Professor Emeritus Andrew Frank, the “Father” of the plug-in hybrid. UC Davis’ rich automotive heritage includes a history of race car development, beginning with many years of engineering combustion-engined vehicles.

In 2009 a group of students determined to create a hybrid race car formed the UCD Formula Hybrid Team. Their first creation, FH1, was based on a Pre-Transmission, Post-Clutch integrated drivetrain; a design that optimally utilized both the electric and combustion components of the powertrain and allowed for full electric, full gas, or combined power sources. This car went on to place 3rd in the official competition at the New Hampshire Motor speedway, as well as a first place finish at the UC Irvine Invitational. The second hybrid car, FH2, was built on a redesigned chassis optimized for hybrid architecture. FH2 placed 4th at the international competition in New Hampshire and took home 1st place at Emerging Technology Day at the Indy 500.

Our First Car: FE1

The UC Davis Formula Racing team was started in 2013 when a number of students decided to build the school’s first electric race car. Starting from the ground up, a powertrain architecture utilizing 2 ZERO motorcycle motors with an electrically controlled active differential was decided upon. The system was designed to incorporate torque-vectoring, which would allow for better handling and performance when cornering.

As a result of this design fortitude, innovation, and determination, the team placed 1st in the United States, 2nd in North America, and 3rd overall at the 2014 Lincoln FSAE Electric official competition; and was the first American team to pass the electric vehicle tech inspection.

Year Produced: 2013-2014

Weight: 654lbs (without driver)

Weight Balance: Left/Right 49.9:50.1 | Front/Back 49:51

Electric Motor: 2 Zero Z-Force 75-5 Radial Flux, brushless, permanent magnet

Output: 80 kW  | 190 N-m

Max Speed: 76.4 mph (123 kph)

0-60 Time: 3.1 seconds

Battery Capacity: 6 kWh

Suspension: Double unequal A-Arm, Push-rod actuated

Chassis: 4130 Chromoly steel

Notable Features: Dual-motor torque vectoring

FE2

For our second electric car, we considered the design of FE1 and focused on reducing the weight and overall length of FE2, as well as system-level optimization. Rather than use two motors, it was decided that using a single motor would result in a better power-to-weight ratio by using the motor to its full potential and reducing the overall size of the battery pack. This also allowed for a significantly more compact drivetrain and a dramatic reduction in overall length when compared to FE1. An ideal reduction ratio of 6:1 was achieved by integrating a first stage planetary gearbox and second stage chain for versatility and high torque density. The suspension was designed to be tuneable using well-understood kinematics.  The car also featured a custom battery management system and onboard real-time data logging.

This design netted the team 9th place in the 2015 Lincoln FSAE Electric competition.

Year Produced: 014-2015

Weight: 550 lbs (without driver)

Weight Balance: Left/Right 49:51 | Front/Back 43.6: 56.4

Electric Motor: ZERO Z-Force 75-7 Radial Flux, brushless, permanent magnet

Output: 50 kW | 40 N-m

Max Speed: 70 mph  (112.65 kph)

Accumulator: Farasis pouch cell, NCM-cathode Li-Ion

Battery Capacity: 7.5 kWh

Suspension: Upper A-Arm, Lower Multilink

Chassis: 1020 DOM mild steel

Notable Features: Carbon fiber seat, adjustable power, interchangeable battery pack

FE3

For our third electric car, we focused on starting a process of incremental improvements, rather than attempting to improve every system with a clean slate design, as was done with FE2. Our designs for FE3 were oriented around modularity and manufacturability, to leave more time for testing and validation. Weight reduction and packaging efficiency improvements were made in all systems.

FE3 placed 10th at the 2016 FSAE Electric competition in Lincoln, Nebraska.

Year Produced: 2015-2016

Weight: 519 lbs (without driver)

Weight Balance: Left/Right 49.6:50.4 | Front/Back 50.1:49.9

Electric Motor: ZERO Z-Force 75-7 Radial Flux, brushless, permanent magnet

Output: 50 kW | 40 N-m

Max Speed: 93 mph (149.67 kph)

Accumulator: Farasis pouch cell, NCM-cathode Li-Ion

Battery Capacity: 7.5 kWh

Suspension: Independent double A-Arms, push-rod actuated

Chassis: 1010 CR square and 1020 DOM round mild steel tubing

Notable Features: Modular suspension, tachometer

FE4

Building off FE3’s successful design, FE4 marked the beginning of our efforts to advance and optimize designs based on extensive subsystem analysis, validation, and targeted improvement of vehicle performance in specific competition settings. As with previous vehicles, modularity, backwards compatibility, and weight reduction were achieved wherever possible.

FE4 was our first vehicle to use an aircraft-grade fabric wrap in lieu of more traditional fiberglass or carbon fiber body panels, apart from a small fiberglass nosecone. The fabric panels weighed approximately ten times less per square yard than the previous year’s fiberglass panels.

The team’s enthusiasm, attention to detail, and determination led to the earliest vehicle completion timeline on record. This meant FE4 went through extensive testing before heading off to competition, another team first. As a result, FE4 was dynamically verified and tuned for optimal performance before heading off to competition.

At competition, FE4 quickly passed technical inspections and competed in every dynamic event, a major milestone for the team! Ultimately FE4 placed 6th overall.

Year Produced: 2016-2017 

Weight: 486 lb 

Weight Balance: 49% Front | 49.5% Left 

Electric Motor:  ZERO Z-Force 75-7 

Output: 50 kW @ 3850 RPM 

Max Torque: 140 N-m for 120 sec 

Max Speed: 84 mph (135.18 kph) 

Accumulator: NCM-Cathode Li-Ion  

Battery Capacity: 7.6 kWh
Suspension: Double Wishbone with Pushrod-Actuated Shock Absorber 

Chassis: 4130 Steel Space Frame 

Notable Features: Aircraft-grade fabric body 

FE5

Following FE4’s design validation and successful competition performance, FE5 was designed with iterative performance improvements in mind, alongside the development of a vehicle model that would be used in the development of future cars. Weight reduction and modularity were emphasized throughout the design process.  

After using the same basic setup from 2015-2017; a new powertrain was developed for FE5. The new battery featured smaller cells, reduced overall capacity, and increased packaging efficiency. In addition to better optimizing the battery for the competition environment, a central focus was placed on improving the battery’s thermal management. 3D printed side ducts directed air into the accumulator and over heat spreaders, which were placed between each cell. A prototype motor controller was built using upgraded components with higher thermal tolerances and a larger heat sink. 

FE5 was tested extensively prior to competition, and data from test days was used to continually improve the vehicle model. At competition, FE5 was unable to pass the electrical technical inspection when water entered an electronics enclosure during the rain test. The team placed first in the Cost event after a complete overhaul of the Cost Report, and FE5 ultimately placed 16th overall.  

Year Produced: 2017-2018 

Weight: 463lb 

Weight Balance: 50.6% Front | 49.6% Left 

Electric Motor: ZERO Z-Force 75-7R 

Output: 50 kW @ 3850 RPM 

Max Torque: 140 N-m for 120 sec 

Max Speed: 79.6mph 

Accumulator: NCM-Cathode Li-Ion 

Battery Capacity: 6.1 kWh

Suspension: Double Wishbone with Pushrod-Actuated Shock Absorber 

Chassis: 4130 Steel Space Frame 

Notable Features: Easily Adjustable Suspension

FE6

After several iterative years, FE6’s design included significant changes that better aligned our vehicle’s performance with the top EV teams. As a whole, the team focused on re-establishing and solidifying fundamental understandings of subsystems to promote documentation for future years, and ensured product control through attention to subsystem interfaces and organizational measures.

Following FE5’s electrical system failure to pass its technical inspection due to water entry, additional emphasis was placed on designing effective seals and water pathways. For the first time, active cooling was implemented using fans to force air through the battery. Internal baffles and adjustable fan speeds based on thermal conditions were used to evenly and effectively regular internal temperatures.  FE6 also featured the team’s first 10” wheel package, designed to improve steering angle and reduce unsprung weight, and created an opportunity to use a Drexler clutch-pack LSD. FE6’s body panels remained aircraft fabric, while the nosecone, top cover, and seat were manufactured from carbon fiber for the first time.

Testing prior to competition was used to tune FE6 for optimal performance and identify any durability concerns, especially regarding systems related to the all-new wheel package and differential. Thanks to the team’s attention to detail, drive, and determination; FE6 placed 4th overall, 3rd in the United States, placed 2nd in Endurance and 2nd in Cost at the FSAE Electric competition.   

Year Produced: 2018-2019

Weight: 449 lb

Weight Balance: 49.0% Front| 50.2% Left

Electric Motor: ZERO Z-Force 75-7R

Output: 50 kW @ 3850 RPM

Max Torque: 140 N-m for 120 sec

Max Speed: 80 mph

Accumulator: NCM-Cathode Li-Ion

Battery Capacity: 6.1 kWh

Suspension: Double Unequal A-Arm with Pushrod Actuated Shock Absorber

Chassis: 4130 Steel Space Frame

Notable Features: Carbon Fiber seat, headrest, nosecone, and nose-flap
Drexler Limited Slip Differential
4.5m turning radius for increased dynamic performance

Add a Comment

Your email address will not be published. Required fields are marked *